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Abstract-The present work involves the numerical simulation of forced convective incompressible flow 
through porous media, and the associated transport processes. A full general model for the momentum 
equation was employed. The mathematical model for energy transport was based on the two-phase equation 
model which assumes no local thermal equilibrium between the fluid and the solid phases, The investigation 
aimed at a comprehensive analysis of the influence of a variety of effects such as the inertial effects, 
boundary effects, porosity variation effects, thermal dispersion effects, validity of local thermal equilibrium 
assumption and two dimensionality effects on the transport processes in porous media. The results presented 
in this work provide detailed yet readily accessible error maps for assessing the importance of various 

simplifying assumptions which are commonly used by researchers. 

1. INTRODUCTION 

THE TRANSPORT phenomena in porous media have 

been of continuing interest for the past five decades. 
This interest stems from the complicated and inter- 
esting phenomena associated with transport processes 
in porous media. The wide applications available have 
led to numerous investigations in this area. Such 
applications can be found in solar receiver devices, 
building thermal insulation, heat exchangers, energy 
storage units, ceramic processing and catalytic reac- 
tors to name a few. Utilization of porous layers for 
transpiration cooling by water for fire fighting and 
rescue operations has also proved to be a promising 
research area. Yano et al. [l] have experimentally 
investigated the utilization of porous layers and water 
to maintain low temperature even in fire conditions. 
This is important for a number of applications such as 

security systems and safety equipment which demand 
thermal protection in the initial stage of a fire. Our 
attention in this study focuses on packed beds of solid 
sphere particles in particular and porous media in 
general. 

Many aspects in this field are important to explore 
for a thorough understanding of the fluid mechanics 
and the heat transfer characteristics that are involved 
in the transport phenomena through porous beds. 
Some of the aspects related to transport phenomena 
were tackled in the literature. Vafai and Tien [2] dis- 

cussed the potential of the inertial effects and the solid 
boundary effects on momentum and energy transport 
through constant-porosity media. The investigation 
provided insight on the applicability of the customarily 

employed Darcy’s law. 
In some applications, such as drying and metal 

processing, the constant-porosity assumption is in- 
valid. It has been recognized that an impermeable 

boundary influences the porosity distribution of a 
porous medium. The porosity is high in the vicinity 

of an impermeable boundary and decreases to an 
asymptotic value at about four to five sphere diam- 
eters from it. Moreover, the porosity of the bed was 
found to exhibit sinusoidally damping decay 

especially close to the wall (Roblee et al. [3] and 
Benenati and Brosilow [4]). This phenomenon intro- 
duces the channeling effect which has been widely 
discussed in the literature [S-l 21. 

An important topic in packed beds relates to the 

mixing and recirculation of local fluid streams as the 
fluid flows through tortuous paths offered by the 
solid particles. This secondary flow effect is classified 
as thermal dispersion. Extensive attention has been 
given to studies on the determination of the axial and 
radial effective thermal conductivities in cylindrical 
packed beds [13-171. Investigations by Cheng and 
Vortmeyer [lo] and Hunt and Tien [ 1 l] provided some 
insight into the physics of the dispersion phenomenon. 
The aforementioned work neglected the inertial effects 
from the proposed model. Previous investigations 
[18-201 have noted the small contribution from the 
axial dispersion to the overall energy transport and 
the fact that its significance is confined to low Peclet 
or particle Reynolds numbers. This is because the 
convective heat transfer dominates the axial diffusion 
mode at high how rates, therefore, the axial dispersion 
quantity can be neglected without causing significant 

impact on the heat transfer results. Subsequent ana- 
lytical models, such as those cited by Hunt and Tien 
[l l] and Cheng and Zhu [21], were proposed to simu- 
late the energy transport in porous media. These 
models have taken into consideration the non- 
Darcian effects and the thermal dispersion effects. 
However, variations do exist among these models in 
terms of the Nusselt number predictions at various 
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NOMENCLATURE 

porosity variation parameters. 
equation (12) 
specific surface area of the packed bed 

[mm ‘I 
specific heat at constant pressure 
[J kg- ’ Km’] 
particle diameter [m] 
pressure gradient [N mm ‘1 
Darcy number, K, /Hz 
the geometric function defined in 

equation (6) 
fluid-to-solid heat transfer coefficient 

[Wmem2K ‘1 
height of the packed bed [m] 
index for x-coordinate 
index for _r-coordinate 
unit vector oriented along the pore 

velocity vector, op/]c,] 
thermal conductivity [W m- ’ K ‘1 
permeability [m’] 
length of the pack bed [m] 
local thermal equilibrium 
Nusselt number 
Prandtl number, ,uC,,/k, 

particle Reynolds number, pru,d,,/~ 
time [s] 
temperature [K] 
velocity component in the .u-direction 
[m ss’] 

velocity vector [m s ‘1 
Cartesian coordinates [ml. 

Greek symbols 
a thermal diffusivity [m’ s-- ‘1 

II shape parameter defined in equation (22) 
I: porosity 

‘1 dimensionless vertical scale defined in 
equation (21) 

II dimensionless fluid phase temperature, 

(TX-T,)U--T,,) 
0 dimensionless solid phase temperature, 

(T,- r,)i(r,, - T,,\) 

p dynamic viscosity [kg mm ’ s- ‘1 
r 5 dimensionless length scale defined in 

equation (23) 

P density [kg m ‘1 
w relaxation factor for successive over 

relaxation scheme. 

Subscripts 
e inlet 
f fluid 
feff effective property for fluid 
m mean 
0 reference 
S solid 
seff effective property for solid 
W wall 
X x-component 

.J y-component 
cx: asymptotic or free stream. 

Superscripts 
f fluid 
S solid 
* dimensionless quantity. 

Symbols 

0 ‘local volume average’ of a quantity. 

Peclet numbers due to incorporating different for- 
mulations for the porosity variation and the effective 
thermal conductivity [22]. 

In all the above mentioned investigations, a single- 
phase model was adopted which assumes a state of 
local thermal equilibrium (LTE) between the fluid and 
the solid phase at any location in the bed. This is a 
common practice for most of the investigations in this 
area where the temperature gradient at any location 
between the two phases is assumed to be negligible. 
This assumption must be relaxed for a number of 
problems such as fixed bed nuclear propulsion systems 
and nuclear reactor modeling where the temperature 
difference between the coolant and the solid rods 
becomes crucial. Recent investigation by Vafai and 
Sozen [23], which was based on the two-phase equa- 
tion model, reported significant discrepancies between 
the fluid and solid phase temperature distributions. 
The investigation by Vafai and Siizen [23] allowed a 
simple characterization scheme for interpreting the 

applicability of LTE condition and the one dimen- 
sional approach for various compressible flow con- 
ditions and porous bed configurations. 

To our knowledge, the investigations performed to 
date for establishing adequate models for transport 
phenomena in porous media with incompressible 
working fluids incorporate one or more simplifying 
assumptions such as LTE condition, neglect of the 
axial conduction term from the energy equation, one 
dimensional approach, constant porosity assumption 
and neglect of boundary and inertial effects. In the 
present work, the steady-state analysis of incom- 
pressible flow through a bed of uniform solid sphere 
particles packed randomly is discussed. Pertinent vel- 
ocity and temperature fields are presented. Different 
effects such as the inertial effect, the macroscopic shear 
stress (solid boundary effect) and the effect of the 
porosity variation model on the momentum and 
energy transport in a confined porous bed are 
discussed. Moreover, the inclusion of thermal dis- 
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persion effects on the convective energy transport in 
packed beds are discussed in great detail. Finally, the 
LTE assumption and the two dimensionality behavior 
are illustrated in integrated forms. The percentage 
error involved in calculating the Nusselt number 
between the generalized model, which incorporates all 
non-Dar&an effects and simplified models which lack 
one or more of the non-Darcian effects are illustrated 
in terms of error maps. These error maps allow a 
simple characterization scheme for interpreting the 
applicability of the simplified models to various flow 
conditions and bed configurations. Throughout the 
analysis, the choice of three non-dimensional par- 
ameters is found to be inherently tied to the physics 
of the problem. These parameters are the particle 
Reynolds number. the Darcy number and the solid- 
to-fluid diffusivity ratio. 

2. ANALYSIS 

The problem under investigation is forced con- 
vection of incompressible fluid flow through a packed 
bed of spherical particles as illustrated in Fig. l(a). 
The computationai length and height of the bed were 
chosen to be 50 and 20 cm, respectively. The extent of 
the packed bed in the z-direction is assumed to be 
long enough that the problem will essentially be two 
dimensional. 

At this point it is instructive to summarize the 
assumptions on which the established model is based. 

(1) The medium is isotropic. However, the depen- 
dency of quantities such as the geometric function and 
the effective thermal conductivities are accounted for. 

(2) The solid spheres are of uniform shape and 
incompressible. 

(3) The forced convection dominates the packed 
bed, i.e. natural convection effects are negligible. 

(4) The variation of thermophysical properties 
with temperature is ignored. This is a reasonable 
assumption for the operating temperature range 
applied (40 K) in the analysis. 

(5) Due to the relatively low operating temperature 
considered in the present study, the inter-partible and 
intra-particle radiation heat transfer are neglected. 

2.1. Governing equations 
By assimilating the above points, the system of the 

governing equations can be presented in the following 
vectorial form based on the volume average technique 
12, 7, 231 : 

Continuity equation 

V.(Ll> = 0 

Momentum equation 

(1) 

%((e-Vfa) = -++@[(D)*(Q]J 
JK 

+ ~v2(+v(P>’ (2) 

Fluid phase energy equation 

= V‘ {k,,*V(&)3 +h,&((T,)‘- <TJ’) (3) 

Solid phase energy equation 

= V - (k,n- V( 7-J’) -h,p,~( T,)‘-- (T,)‘) (4) 

where (II/,)” refers to the intrinsic phase average of 
quantity II/ for phase tl. The physical aspects of various 
terms in the governing equations are discussed in refs. 
[2,7,23] and the symbols are defined in the nomencla- 
ture. It is important to know that the time interval 
within which steady-state condition is reached for the 
velocity field is of the order of a few seconds for most 
practical cases (Vafai and Ticn [24]). Therefore, in 
the numerical analysis the steady-state forms of the 
continuity and the momentum equations, equations 
(1) and (2), are considered. 

The pe~eability of the packed bed and the geo- 
metric function are based on experimental results [25] 
and may be expressed in the following form [7] : 

(6) 

where d, is the particle diameter. The specific surface 
area of the packed bed which appears in both energy 
equations, equations (3) and (4), is developed based 
on geometrical considerations (Vafai and Siizen 1231) : 

6(1-E) asf = ~ _ 
4 

The formulation of the fluid-to-solid heat transfer 
coefficient in this study was based on an empirical 
correlation established by Wakao er a!. [ 1.5, 16) and 
is presented as follows 

In the present study, the dispersion phenomenon is 
treated as an additional diffusive term added to the 
stagnant component (Hunt and Tien [I I]). The stag- 
nant component is expressed in terms of the phase 
porosities and the individual thermal conductivities 
of the phases. The empirical correlation developed by 
Wakao and Kaguei [ 1151 is employed in this study to 
model the effective conductivities. 
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kserr = (1 - E)k,. (11) 

As mentioned earlier, experimental observations 

[3,4] indicate that the porosity in a randomly packed 
bed is functionally dependent on the distance from 
the wall. A common practice is to consider an expo- 
nential decaying function to approximately simulate 
the porosity variation. This can be expressed math- 
ematically as 

where E, is the free stream porosity while a, and a1 
are empirical constants. The free steam porosity was 
chosen to be 0.37, whereas a, = I .7 and az = 6. These 
values were found to be a good approximation to the 
above reported experimental data [3, 41. Moreover, 
these constants will be utilized in the computations 
wherever the exponential porosity model is used. 

The porosity variation can be more rigorously pre- 
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dieted by accounting for the damped oscillation close 
to the wall. A model proposed by Mueller [26] was 

found to closely simulate the experimental finding 
of Benenati and Brosilow [4]. Since the exponential 
decaying function ignores the damped oscillation, the 
proposed model will display how far the exponential 
function is from the ‘actual’ porosity variation model 
given by Mueller [26]. 

The Nusselt number is separately defined for the 
fluid and solid phase and is expressed as 

Fluid phase Nusselt number 

(13) 

Solid phase Nusselt number 

(14) 

where Tm, and T,,,, are the mixed mean temperature 
of the fluid and the solid phase respectively and are 
defined as follows 

J u T,dy 
Tm, = 0-p 

UtJf (15) 

(16) 

It should be mentioned that the definition of the 
Nusselt number essentially represents the tempera- 
ture gradient at the boundary. This was purposely 
done since studies in the literature define the Nusselt 
number in a similar manner even for a variable con- 
ductivity medium. However, the error maps, pre- 
sented in Figs. 3 and 6, are established based on the 
heat flux condition, i.e. after multiplying the Nusselt 
number, as given by equations (13) and (14), by /c,~ 
so that the enhancement in heat flux can be accounted 
for when transverse dispersion is considered. 

2.2. Boundary conditions 

In the problem under investigation, the no slip 

boundary condition is imposed at the wall and the 
walls are kept at constant temperature. The boundary 
conditions are, therefore, as follows 

u(x,y=O)=u(.x,y=H)=O (17) 

T,(x, y = 0) = T,(x, y = 0) = T, (18) 

T,(x, y = H) = T,(x, y = H) = T, (19) 

T,(x = 0,~) = T,(x = 0,~) = T,. (20) 

The entrance and boundary temperatures were taken 
as : 

T, = 300 K, T,,, = 340 K. 

Solid spherical particles of different sizes and 
materials were considered. Particle diameter values of 

2, 5 and 8 mm were utilized in the computations. 
Several runs were also performed for a particle diam- 
eter of 6.4 mm. Different fluids were also considered 
to provide a broad range of solid-to-fluid diffusivity 
ratios. The Prandtl number was assumed constant 

for all the thermophysical properties. The Reynolds 
number was varied by applying different axial pres- 
sure gradients. The physical data for different fluid 
and solid phases which were considered in the numeri- 
cal computations are calculated at the average film 

temperature and are presented in Table I. These 
values were chosen as they are representative of some 
applications. It should be noted that the main features 
and conclusions obtained in this work are not depen- 
dent on the actual entrance or boundary temperature 

values. 

3. SOLUTION METHODOLOGY 

An explicit finite difference scheme was employed 
to solve the system of the governing equations subject 
to the cited boundary conditions. The numerical 
scheme was based on the finite difference versions of 
equations (l)-(4). The steady-state solutions of these 

equations were obtained. Variable grid size was 
implemented in the y-direction while the grid size in the 
x-direction was kept constant. A fine, equally spaced, 
grid size was positioned within 4% of the total height 
from each external boundary while a relatively 
coarser, equally spaced, grid size was used for the core 

region. Since the study under investigation pertains to 
forced convection, the momentum equation and the 
energy equations are not coupled. The momentum 
equation was handled by first linearizing the non- 
linear term. The resulting set of algebraic equations 
was solved by tridiagonalization of the solution 

matrix. 
The energy equations were handled in the following 

manner. The spatial derivatives were discretized by 
the central differencing except for the convective term 
which is approximated by an upwind differencing 
scheme. At grid points on the right boundary, a 

three point differencing was employed for the spatial 
x-derivatives instead of the Neumann (insulated) 
boundary conditions. This was achieved by linear 
extrapolation from the preceding two grid points in 
the x-direction. This assumption is valid since the 
problem under consideration has a strong parabolic 

behavior. The validity of the assumption was exam- 
ined by extending the computational domain beyond 
the physical axial dimension. The computational 
length of the bed was systematically increased until 
the numerical results within the physical domain were 
no longer affected by an increase in the length of the 
computational domain. 

The energy equations were solved for the fluid and 
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Table I. Physical data 

(a) Fluid phase 

Air 
Water 

Density. p, 

(kg m. ‘) 

1.1 
989 

Thermal 
Specific heat, conductivity, k, Viscosity, 11 

c.1, x 10’ x 10’ 

(J kg ’ K ‘) (Wm-‘K ‘) (kgm ~‘s ‘) 

1008 28 1.9 
4180 640 57.7 

(b) Solid phase 

Lead 
AISI304 
Soda Lime 

Density. p\ 

(kg m-‘) 

Specific heat, C, 

(J kg- ’ Km ‘) 

7660 448 
7900 485 
2225 835 

Thermal 
conductivity. k, 

(Wm-‘K-‘) 

82 
15.2 

1.4 

the solid phase temperature fields using the successive 
over relaxation scheme (SOR). The source term which 
is a function of the field temperature was updated after 
each iteration. The spatial derivative in the Nusselt 
number was computed by using three point diff- 
erencing. The numerical computations were per- 
formed on a CRAY YMP/28. The accuracy of the 

numerical results was rigorously examined. 
Moreover, the stability of the numerical scheme has 

been tested by increasing the number of grid points in 
both directions to ensure a proper combination of Ax 
and Ay. A systematic decrease in the grid size was 
employed for obtaining grid independence results. It 
was assumed steady-state conditions have been 
reached when the temperature values for the fluid and 
the solid phase in two consecutive iterations differed 
by less than the convergence criterion of IO I”. 

4. RESULTS AND DISCUSSION 

To examine the validity of the numerical scheme, 
the numerical results were compared with the most 
closely related analytical and numerical solutions. 
This was achieved by making the necessary adjust- 
ments to our model to reduce it to a system equivalent 
to the simplified available cases. Our numerical results 
for the velocity distribution were compared with the 
analytical results obtained by Vafai [9]. The analytical 
solution given by Vafai [9] had a restriction that a, -e I 
for the solution to be valid. As no analytical solution 
was given for temperature distribution, the numerical 
results from Vafai [9] were used for such comparison. 
The physical properties for velocity distribution com- 
parison were chosen as : (I) dp/dx = 1493 N m j, 
(tp = 4 mm, E, = 0.3, a, = 0.2. uZ = 2.0 and (2) 
dp/dx = 1493 N m-“, d, = 8 mm, E= = 0.3, a, = 0.5, 
a2 = 2.0. While the physical properties for the tem- 
perature distribution comparison were chosen as 

d&ix = 1.2x 105Nm ‘, d, = 8 mm, E,, = 0.4 with the 
following empirical constants : (I) a, = 0.9, ~1~ = 2.0 
and (2) a, = 0.5, u2 = 2.0. Figure l(b) demonstrates 
such a comparison in terms of the dimensionless vari- 

ables that appear in the work of Vafai [9]. As may 
be seen from Fig. l(b), the comparisons display an 
excellent agreement. 

The results from the computations will be pre- 
sented in a non-dimensional form. The dimension- 

less velocity, fluid and solid phase temperature 
distributions chosen for presenting the results are 
defined as : u* = u/u,, II = (T, - T,)/( T, - T,,) and 
0 = (T,, - TJ/(Tu - r,,,), respectively. Based on the 

analysis presented by Vafai and Tien [2], the velocity 
and the temperature fields are plotted against a dimen- 
sionless vertical scale, ‘I, expressed as : 

(21) 

where yX is the free stream shape parameter and [, 
the dimensionless length scale and are defined as : 

(22) 

5 = -u/L. (23) 

The velocity and temperature profiles are presented 
at 5 = 0.5. In addition, the local Nusselt number dis- 
tributions for the two phases are plotted against 5. 

4.1. Non-Darcian eflects 
Figures 2(a) and (b) depict the non-Darcian effects 

on the velocity and temperature field distributions as 
well as the Nusselt number variations. The results 
shown are for the following physical values: 
cc,/cc,- = 25.6, Da = 1.36 x lo- ‘, and Re, = 100. The 
dispersion effects were incorporated in Fig. 2(a) while 
they are excluded from the results presented in Fig. 
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2(b). As can bc seen from Figs. 2(a) and (b). not 
accounting for lhc impermcablc boundary rcduccs the 
velocity profile to a slug Bovv due to the absence 01 
the shear stress along the boundary. In addition, casts 
3 and 4 illustrate that omitting the inertia term in the 
momentum equation increases the velocity near the 
wall region as inertial effects introduce a further 
damping. In general. higher velocities cause an 
increase in the convected energy carried away from 

the boundary compared with that by conduction. This 
results in a thinner thermal boundary layer leading to 
an increase in the Nusselt number. It is important to 
recapitulate that the ‘conventional’ definition of the 

Nussclt number, as given by equations ( 13) and (14). 
is a measure ofthe temperature gradient at the bound- 
ary rather than the quantity of the heat flux gcneratcd 
when the variable conductivity medium is considered. 
As a result of defining the Nusselt number based on 

temperature gradient instead of the actual heat flux. 
the model that excludes the transverse dispersion 
effect exhibits a larger Nusselt number. However, it 
should be noted that the heat flux for the case when 
the dispersion is included is higher than when it is 
excluded. 

To explore the non-Darcian effects for a wide range 
of RP~ and Da, an error map is presented for the 
average fluid phase Nusselt number. Taking the gcner- 
alizcd model as a basis, comparisons with the values 
obtained by the other simplified models that neglect 

one or more non-Darcian effects were made for a 
given Re, and Da. The percentage error involved in 
calculating the average fluid phase Nusselt number 
was found from 

% error = 

liliu(simplificd model) - Nu(generalized model) 1 
Nu(generalized model) 

x 100. (24) 

These comparisons are presented in Fig. 3. The ther- 
mal dispersion effects are incorporated in the depicted 

results. The results are presented for solid-to-fluid 
diffusivity ratio equal to 0.16,4.87 and 25.6. The num- 
bers in parentheses represent the errors in using the 
Darcy model, the modified-Darcy model (the Darcy 
model modified to account for the inertia) and the 
generalized model that neglects the inertial effect, 
respectively. That is, the first number in each entry 
represents the error in using the Darcy model as 
compared to the generalized model, the second num- 
ber represents the error in using the modified Darcy 
model and the third entry represents the error in using 
the generalized model without the inertial effect as 
compared to the generalized model. It can be easily 
seen that as the Da and Re, increase, the computed 
percentage error also increases. An exception for this 
is the error computed from using the Darcy model 
where the percentage error decreases as Re, increases. 
This is because the average velocity computed from 

Darcy’s law always increasc~ by increasing the prcx- 
sure gradient. thus, approaching the velocity con- 
putcd from the generalized model. Consequently, the 
rate of convection predicted by the generalized model 

and the Darcy model follows each other closely as Re,, 
increases. Figure 3 clearly shows that significant error 
is encountered for most cases when employing any of 

the simplified models even for low Re, and Du. 

Figure’4 depicts the effect of employing the ‘actual’ 
porosity variation model instead of the familiar 
exponential model. The dispersion effects were incor- 

porated in Fig. 4(a) while they wet-c excluded from 
the results presented in Fig. 4(b). The physical data 
were : x,/a, = 4.87, Da = 5.32 x IO ‘, and Re, = IO. 
The velocity profile is the most sensitive held variable 
to any variation in the porosity. Thus, the velocity 
profile is formed proportional to the porosity vari- 
ation as shown in Fig. 4. The overall temperature 

distribution is not expected to vary remarkedly except 
in a confined region (close to the wall) in response to 
the variation in the velocity magnitude. Hence, the 
Nussclt number demonstrates a better choice of rep- 
resentation for the heat transfer rate. Employing the 
‘actual’ porosity model reveals a different Nusselt 
number distribution from that when the exponential 
model is used. These effects are more pronounced 
when the dispersion effects arc incorporated as the 
effective fluid conductivities depend on the velocity 

vector. 

4.3. Thrrrnnl dispersion qffkts 

The variation of the field variables for the case 
with g,/aC = 4.87, Da = 5.32 x 10 ’ and Re, = 10 are 
shown in Fig. 5. The velocity field is not shown since 
the influence of dispersion is confined to energy trans- 

port. The results show that the longitudinal dispersion 
has negligible effect in forming the overall thermal 
boundary layer. In addition, its effect may be unlikely 
to be detected even in terms of Nusselt number dis- 
tribution Figure 6 shows that the Nusselt number 

distribution for the model that incorporates dis- 
persion is lower than the model that excludes dis- 
persion effects in the transverse direction. The ‘con- 
ventional’ definition of the Nusselt number, defined 
in equations (I 3) and (14). which expresses merely the 
temperature gradient, fails to adequately present the 
enhancement in energy transport due to incorporating 
transverse dispersion effects. Thus, the Nusselt num- 
ber results in the model that neglects transverse dis- 
persion show an increase over the model that adopts 
dispersion. The enhancement due to dispersion effects 
becomes apparent once the temperature gradient is 
multiplied by the effective transverse thermal con- 
ductivity as given in equation (IO) to obtain the actual 
quantity of the general heat Hux. Therefore, the heat 
fux values for the cast when the dispersion effects are 
included are indeed higher than when the dispersion 
effects are excluded. 
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To examine the significance of the longitudinal and 
the transverse thermal dispersion effects more vig- 
orously, an error map is established in terms of the 
average fluid phase Nusselt number to display the 
significance of dispersion effects in both directions for 
a wide range of Da and Re,. The generalized model 
that incorporates the dispersion effects in both direc- 
tions was used as the basis of comparison. The com- 
parisons were carried out with simplified models that 
lack the dispersion effects in one or both directions. 
The average fluid phase Nusselt number was used for 

establishing the error map. To demonstrate the heat 
transfer augmentation due to dispersion effects, the 

Nusselt number was based on the actual heat flux 
which is imposed on the external boundary. The per- 
centage error involved in calculating the average fluid 
phase Nusselt number was found from equation (24). 

These comparisons are shown in Fig. 6 for solid- 
to-fluid diffusivity ratios equal to 0.03 and 4.87. The 
numbers between the parentheses represent the esti- 
mated error in dropping the dispersion effects in both 
directions, nomal direction and axial direction, 
respectively. That is. the first number in each entry 
represents the error in neglecting the dispersion in 
both directions as compared to the generalized model. 
whereas the second number represents the error in 
using the longitudinal dispersion only and the third 
entry represents the error in using the transverse dis- 
persion as compared to the generalized model. Figure 
6 shows that the Darcy number is the primary par- 
ameter, affecting the magnitude of the longitudinal 
dispersion. On the other hand, Fig. 6 confirms that 
the transverse dispersion plays the major role in the 
dispersion phenomenon in porous beds. This is 
because the thermal boundary layer growth is more 

dependent on the transverse thermal conductivity as 
compared to the axial thermal conductivity. 

4.4. Local Thermal Equilibrium (LTE) assumption 

The examination of LTE was carried out by com- 
paring the temperature distributions of the fluid and 
solid phases locally, i.e. at each grid point. This may 

be expressed in the following form 

% LTE = (U~,.,~-O,~.,~~ x 100. (25) 

To classify the outcome based on qualitative ratings 

for LTE assumption, the following categories were 
adopted : very good, less than I % ; good, I- 5% ; 
fair, 5-10% ; poor 10-I 5%, and very poor, more than 
15%. It may seem from an overall view of the figures 
presented earlier for the fluid and solid temperature 
distribution that LTE assumption for steady-state 
incompressible flow is a fair one. However. a closer 
look at the temperature distributions near the wall 
region shows appreciable differences between the two 

phases. Figure 7 demonstrates such an assessment 
using the exponential porosity model for different 
thermal diffusivity ratios. It can be concluded from 
Fig. 7 that the Darcy number is the most influential 
parameter in determining the validity of local thermal 
equilibrium. The particle Reynolds number also plays 
a role in this regard. Based on Fig. 7, the local thermal 
equilibrium assumption becomes less pronounced as 
both Re, and Da increase. In addition, the effect of the 
solid-to-fluid thermal diffusivity ratio in the dividing 
lines is obvious. 

The ‘actual’ porosity model exhibits poor to very 
poor ratings in terms of LTE condition for the diffu- 
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sivity ratios used. The higher level of convection 

obtained by employing the ‘actual’ porosity model in 

the region close to the wall increases the temperature 
difference between the fluid and the solid particles, 
thus, the ratings were found as such. For brevity, the 
results for the ‘actual’ porosity model are not shown 
here. 

4.5. The two-dimensionality behavior of packed beds 
In conjunction with the validity of LTE, a quan- 

titative assessment for the strength of the two-dimen- 
sional behavior was conducted in a similar manner. 
The fluid and solid phase midplane temperatures at a 
selected section were compared with the fluid and 
solid phase local temperatures, respectively, along the 
same section. The end section of the packed bed was 

chosen since the thermal boundary layer reaches its 
maximum thickness at the end of the physical domain. 

The computational runs performed show very small 
variations in two-dimensionality behavior for each of 

the two phases. Therefore, for brevity, the results are 
presented for the fluid phase only. The assessment 
of the strength of the two-dimensional behavior was 
established in two steps. First, the difference between 
the dimensionless temperature of a local position and 
the midplane was computed from 

% difference = [0(x = L, y) -0(.x = L, y = H/2) ( 

(26) 

The difference was checked starting from the midplane 
location and moving downward. At each local normal 
position. the ‘% difference’ cited in equation (26) 

was evaluated. The height at which the ‘% differ- 
ence’ between the local and midplane temperatures 

becomes equal to or greater than 2.5% was cited. 
The region beyond this height was considered to 
have significant two-dimensional effects. Next, the 
percent of the distance traveled (the spotted position) 

to half channel height was found from 

% height = 
y(located position) 

half channel width (27) 

where y is measured from the bottom plate. The 
‘% height’ was set to be equal to the strength of the 
two-dimensionality of the packed bed for the given 
physical conditions. Thus, the higher ‘% height’ 
reflects a stronger two-dimensional behavior. Figures 

8(a) and (b) demonstrate the assessment of the 
strength of the two-dimensional behavior for the 
exponential and the ‘actual’ porosity variation models, 

respectively. For each porosity model the two-dimen- 
sionality characteristics are shown for two cases. First, 
for a fixed Da and a range of Re,, and also for a fixed 
Re, and a range of Da. Several interesting features are 
seen in these figures which invite further investigation 
in this area. A three-dimensional view could provide 
a better perspective for the two-dimensionality 
behavior as a function of q/a, Da and Re,. However, 

such a three-dimensional figure was found to be less 

informative than the presented format. 

5. CONCLUSIONS 

In this work, accurate simulation of transport 
phenomena in packed beds has been accomplished. 

The analysis has been conducted for steady, incom- 
pressible forced convective fluid flow. In addition, 

the simulation was carried out using separate energy 
equations for the fluid and solid phases. Furthermore, 
the investigation aimed at exploring the influence of 
a variety of effects such as the inertial effects, the 
boundary effects, the porosity variation model and 
the thermal dispersion effects on the transport pro- 
cesses in packed beds. What is more, the validity of 
LTE condition and the two-dimensionality behavior 
were also presented. In addition, comprehensive error 
maps on the basis of the numerical findings have been 
presented. These error maps establish a char- 
acterization scheme for interpreting the applicability 
of the simplified models and various simplifying 

assumptions for various flow conditions and bed con- 
figurations. 
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